297 research outputs found

    Parallel authenticated encryption with the duplex construction

    Get PDF
    The authentication encryption (AE) scheme based on the duplex construction can no be paralellized at the algorithmic level. To be competitive with some block cipher based modes like OCB (Offset CodeBook) or GCM (Galois Counter Mode), a scheme should allow parallel processing. In this note we show how parallel AE can be realized within the framework provided by the duplex construction. The first variant, pointed by the duplex designers, is a tree-like structure. Then we simplify the scheme replacing the final node by the bitwise xor operation and show that such a scheme has the same security level

    Inspiring Technologies for Digital Inclusivity

    Get PDF
    This editorial aims to summarise the special issue entitled Inspiring Technologies for Digital Inclusivity, which was prepared from selected papers from the 12th International Conference on IT in Asia (CITA'21). The special issue consists of five scientific articles

    Algebraic Attack Efficiency versus S-box Representation

    Get PDF
    Algebraic analysis of block ciphers aims at finding the secret key by solving a collection of polynomial equations that describe the internal structure of a cipher for chosen observations of plaintext/ciphertext pairs. Although algebraic attacks are addressed for cryptanalysis of block and stream ciphers, there is a lack of understanding of the impact of algebraic representation of the cipher on efficiency of solving the resulting collection of equations. The work investigates different S-box representations and their effect on complexity of algebraic attacks. In particular, we observe that a S-box representation defined in the work as \textit{Forward-Backward} (FWBW) leads to a collection of equations that can be solved efficiently. We show that the SR(10,2,1,4)SR(10,2,1,4) cipher can be broken using standard algebra software \textsc{Singular} and FGb. This is the best result achieved so far. The effect of description of S-boxes for some light-weight block ciphers is investigated. A by-product of this result is that we have achieved some improvements on the algebraic cryptanalysis of LBlock, PRESENT and MIBS light-weight block ciphers. Our study and experiments confirms a counter-intuitive conclusion that algebraic attacks work best for the FWBW S-box representation. This contradicts a common belief that algebraic attacks are more efficient for quadratic S-box representation

    A New Human Identification Protocol and Coppersmith\u27s Baby-Step Giant-Step Algorithm

    Get PDF
    We propose a new protocol providing cryptographically secure authentication to unaided humans against passive adversaries. We also propose a new generic passive attack on human identification protocols. The attack is an application of Coppersmith\u27s baby-step giant-step algorithm on human identification protcols. Under this attack, the achievable security of some of the best candidates for human identification protocols in the literature is further reduced. We show that our protocol preserves similar usability while achieves better security than these protocols. A comprehensive security analysis is provided which suggests parameters guaranteeing desired levels of security

    Applications of Key Recovery Cube-attack-like

    Get PDF
    In this paper, we describe a variant of the cube attack with much better-understood Preprocessing Phase, where complexity can be calculated without running the actual experiments and random-like search for the cubes. We apply our method to a few different cryptographic algorithms, showing that the method can be used against a wide range of cryptographic primitives, including hash functions and authenticated encryption schemes. We also show that our key-recovery approach could be a framework for side-channel attacks, where the attacker has to deal with random errors in measurements

    Practical Complexity Cube Attacks on Round-Reduced Keccak Sponge Function

    Get PDF
    In this paper we mount the cube attack on the Keccak sponge function. The cube attack, formally introduced in 2008, is an algebraic technique applicable to cryptographic primitives whose output can be described as a low-degree polynomial in the input. Our results show that 5- and 6-round Keccak sponge function is vulnerable to this technique. All the presented attacks have practical complexities and were verified on a desktop PC

    Algebraic Attacks on Human Identification Protocols

    Get PDF
    Human identification protocols are challenge-response protocols that rely on human computational ability to reply to random challenges from the server based on a public function of a shared secret and the challenge to authenticate the human user. One security criterion for a human identification protocol is the number of challenge-response pairs the adversary needs to observe before it can deduce the secret. In order to increase this number, protocol designers have tried to construct protocols that cannot be represented as a system of linear equations or congruences. In this paper, we take a closer look at different ways from algebra, lattices and coding theory to obtain the secret from a system of linear congruences. We then show two examples of human identification protocols from literature that can be transformed into a system of linear congruences. The resulting attack limits the number of authentication sessions these protocols can be used before secret renewal. Prior to this work, these protocols had no known upper bound on the number of allowable sessions per secret

    Pseudorandom Bit Generation with Asymmetric Numeral Systems

    Get PDF
    The generation of pseudorandom binary sequences is of a great importance in numerous applications stretching from simulation and gambling to cryptography. Pseudorandom bit generators (PRBGs) can be split into two classes depending on their claimed security. The first includes PRBGs that are provably secure (such as the Blum-Blum-Shub one). Security of the second class rests on heuristic arguments. Sadly, PRBG from the first class are inherently inefficient and some PRBG are insecure against quantum attacks. While, their siblings from the second class are very efficient, but security relies on their resistance against known cryptographic attacks. This work presents a construction of PRBG from the asymmetric numeral system (ANS) compression algorithm. We define a family of PRBGs for 2R2^R ANS states and prove that it is indistinguishable from a truly random one for a big enough RR. To make our construction efficient, we investigate PRBG built for smaller R=7,8,9R=7,8,9 and show how to remove local correlations from output stream. We permute output bits using rotation and Keccak transformations and show that permuted bits pass all NIST tests. Our PRBG design is provably secure (for a large enough RR) and heuristically secure (for a smaller RR). Besides, we claim that our PRBG is secure against quantum adversaries
    • …
    corecore